Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
BMC Complement Med Ther ; 24(1): 129, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521901

RESUMO

BACKGROUND: The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS: The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS: HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS: HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.


Assuntos
Antimaláricos , Malária , Mammea , Camundongos , Animais , Antimaláricos/toxicidade , Extratos Vegetais/toxicidade , Malária/tratamento farmacológico , Flores , Peso Corporal
2.
Acta Parasitol ; 68(4): 832-841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831282

RESUMO

BACKGROUND: As per estimates by WHO in 2021 almost half of the world's population was at risk of malaria and > 0.6 million deaths were attributed to malaria. Therefore, the present study was aimed to explore the antimalarial activity of extracts derived from the leaves of the plant Anacardium occidentale L., which has been used traditionally for the treatment of malaria. Different extracts of A. occidentale leaves were prepared and tested for their inhibitory activity against recombinant P. falciparum transketolase (rPfTK) enzyme, in vitro. Further, growth inhibitory activity against cultivated blood stage P. falciparum parasites (3D7 strain), was studied using SYBR Green fluorescence-based in vitro assays. Acute toxicity of the hydro alcoholic extracts of leaves of A. occidentale (HELA) at different concentrations was evaluated on mice and Zebra fish embryos. HELA showed 75.45 ± 0.35% inhibitory activity against the recombinant PfTk and 99.31 ± 0.08% growth inhibition against intra-erythrocytic stages of P. falciparum at the maximum concentration (50 µg/ml) with IC50 of 4.17 ± 0.22 µg/ml. The toxicity test results showed that the heartbeat, somite formation, tail detachment and hatching of embryos were not affected when Zebra fish embryos were treated with 0.1 to 10 µg/ml of the extract. However, at higher concentrations of the extract, at 48 h (1000 µg/ml) and 96 h (100 µg/ml and 1000 µg/ml, respectively) there was no heartbeat in the fish embryos. In the acute oral toxicity tests performed on mice, the extract showed no toxicity up to 300 mg/kg body weight in mice. CONCLUSION: The hydro-alcoholic extract of leaves of A. occidentale L. showed potent antimalarial activity against blood stage P. falciparum. Based on the observed inhibitory activity on the transketolase enzyme of P. falciparum it is likely that this enzyme is the target for the development of bioactive molecules present in the plant extracts. The promising anti-malarial activity of purified compounds from leaves of A. occidentale needs to be further explored for development of new anti-malarial therapy.


Assuntos
Anacardium , Antimaláricos , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Plasmodium falciparum , Transcetolase/uso terapêutico , Peixe-Zebra , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Extratos Vegetais/farmacologia
3.
BMC Complement Med Ther ; 23(1): 211, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370061

RESUMO

BACKGROUND: Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds. METHODS: Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423. RESULTS: The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56 µg/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63 µg/mL. All extracts, fractions, and isolated compounds demonstrated no cytotoxicity against Raw cell lines with CC50 > 250 µg/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000 mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family. CONCLUSION: This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria.


Assuntos
Antimaláricos , Burseraceae , Malária Falciparum , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Extratos Vegetais/química , Casca de Planta , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Folhas de Planta/química , Mamíferos
4.
BMC Complement Med Ther ; 23(1): 144, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143036

RESUMO

BACKGROUND: Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities. METHODS: Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation's aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter's 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%). CONCLUSION: The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/toxicidade , Extratos Vegetais/química , Malária/tratamento farmacológico , Malária/parasitologia , Medicina Tradicional
5.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999404

RESUMO

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Assuntos
Antimaláricos , Lumefantrina , Malária , Polímeros , Animais , Camundongos , Administração Intravenosa , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Área Sob a Curva , Modelos Animais de Doenças , Combinação de Medicamentos , Lumefantrina/administração & dosagem , Lumefantrina/análogos & derivados , Lumefantrina/síntese química , Lumefantrina/farmacocinética , Lumefantrina/uso terapêutico , Lumefantrina/toxicidade , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Parasitemia , Plasmodium falciparum , Polímeros/química , Polímeros/farmacologia , Polímeros/uso terapêutico , Solubilidade , Água/química , Masculino
6.
Toxicon ; 227: 107092, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36967019

RESUMO

The rise and spread of resistant Plasmodium falciparum strains are responsible for an increase in therapeutic failures in many of the regions endemic with malaria. The need for new therapeutic candidates is now more urgent than ever. Animal venoms have long been considered as interesting resources to exploit in terms of potential therapeutic candidates. Among these, the cutaneous secretions of toads constitute a rich and diverse source of bioactive molecules. We focused on two different species: Bufo bufo and Incilius alvarius. The dried secretions underwent a solvent-based extraction and were submitted to a systematic bio-guided fractionation approach using preparative thin-layer chromatography. Initial crude extracts were tested in vitro for their antiplasmodial activity. Based on these results, only crude extracts displaying IC50 < 100 µg/mL were considered for further fractionation. All extracts and fractions, including those that did not display antiplasmodial properties, were characterized by chromatographic (LC-UV/MS) and spectrometric techniques (HRMS). Antiplasmodial activity was evaluated in vitro using a chloroquine-sensitive strain (3D7) and a resistant one (W2). Toxicity was assessed on normal human cells for the samples displaying IC50 < 100 µg/mL. Crude extracts from Bufo bufo secretions exhibited no appreciable antiplasmodial activities. However, the methanol and dichloromethane extracts from Incilius alvarius secretions gave IC50 of (34 ± 4) µg/mL and (50 ± 1) µg/mL respectively when tested on W2 strain. No significant effect was observed on 3D7. This poison would warrant further investigation in terms of its antiplasmodial potential. Following preliminary characterization, it was revealed that the fractions of interest contained mainly bufotoxins, bufagins and alkaloids.


Assuntos
Antimaláricos , Malária , Venenos , Animais , Humanos , Antimaláricos/toxicidade , Antimaláricos/análise , Bufo bufo , Extratos Vegetais/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Bufonidae
7.
BMC Complement Med Ther ; 23(1): 12, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653791

RESUMO

BACKGROUND: Drug resistance exists in almost all antimalarial drugs currently in use, leading to an urgent need to identify new antimalarial drugs. Medicinal plant use is an alternative approach to antimalarial chemotherapy. This study aimed to explore potent medicinal plants from Prabchompoothaweep remedy for antimalarial drug development. METHODS: Forty-eight crude extracts from Prabchompoothaweep remedy and its 23 plants ingredients were investigated in vitro for antimalarial properties using Plasmodium lactate dehydrogenase (pLDH) enzyme against Plasmodium falciparum K1 strain and toxicity effects were evaluated in Vero cells. The plant with promising antimalarial activity was further investigated using gas chromatography-mass spectrometry (GC-MS) to identify phytochemicals. Antimalarial activity in mice was evaluated using a four-day suppressive test against Plasmodium berghei ANKA at dose of 200, 400, and 600 mg/kg body weight, and acute toxicity was analyzed. RESULTS: Of the 48 crude extracts, 13 (27.08%) showed high antimalarial activity against the K1 strain of P. falciparum (IC50 <  10 µg/ml) and 9 extracts (18.75%) were moderately active (IC50 = 11-50 µg/ml). Additionally, the ethanolic extract of Prabchompoothaweep remedy showed moderate antimalarial activity against the K1 strain of P. falciparum (IC50 = 14.13 µg/ml). Based on in vitro antimalarial and toxicity results, antimalarial activity of the aqueous fruit extract of Terminalia arjuna (IC50 = 4.05 µg/ml and CC50 = 219.6 µg/ml) was further studied in mice. GC-MS analysis of T. arjuna extract identified 22 compounds. The most abundant compounds were pyrogallol, gallic acid, shikimic acid, oleamide, 5-hydroxymethylfurfural, 1,1-diethoxy-ethane, quinic acid, and furfural. Analysis of the four-day suppressive test indicated that T. arjuna extract at dose of 200, 400, and 600 mg/kg body weight significantly suppressed the Plasmodium parasites by 28.33, 45.77, and 67.95%, respectively. In the acute toxicity study, T. arjuna extract was non-toxic at 2000 mg/kg body weight. CONCLUSIONS: The aqueous fruit extract of T. arjuna exerts antimalarial activity against Plasmodium parasites found in humans (P. falciparum K1) and mice (P. berghei ANKA). Acute toxicity studies showed that T. arjuna extract did not show any lethality or adverse effects up to a dose of 2000 mg/kg.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plantas Medicinais , Humanos , Chlorocebus aethiops , Animais , Camundongos , Antimaláricos/toxicidade , Antimaláricos/química , Plantas Medicinais/química , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Células Vero , Malária Falciparum/tratamento farmacológico , Peso Corporal
8.
BMC Complement Med Ther ; 22(1): 268, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229813

RESUMO

BACKGROUND: The WHO recommends artemisinin-based combination regimens for uncomplicated Plasmodium falciparum malaria. One such combination is artemisinin-piperaquine tablets (ATQ). ATQ has outstanding advantages in anti-malarial, such as good efficacy, fewer side effects, easy promotion and application in deprived regions. However, the data about the reproductive and endocrine toxicity of ATQ remains insufficient. Thus, we assessed the potential effects of ATQ and its individual components artemisinin (ART) and piperaquine (PQ) on the reproductive and endocrine systems in Wistar rats. METHODS: The unfertilized female rats were intragastric administrated with ATQ (20, 40, and 80 mg/kg), PQ (15, 30, and 60 mg/kg), ART (2.5, 5, and 10 mg/kg), or water (control) for 14 days, respectively. The estrous cycle and serum levels of estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), prostaglandin (PG), and adrenocorticotropic hormone (ACTH) were determined. The weights of the kidney, adrenal gland, uterus, and ovaries were measured. The histopathological examinations of the adrenal gland, ovary, uterus, and mammary gland were performed. RESULTS: Compared with the control group, there were no significant differences in the examined items of female rats in the ART groups, including general observation, estrous cycle, hormonal level, organ weight, and histopathological examination. The estrous cycle of female rats was disrupted within 4-7 days after ATQ or PQ administration, and then in a persistent dioestrus phase. At the end of administration, ATQ and PQ at three doses induced decreased PG, increased ACTH, increased adrenal weight and size, and pathological lesions in the adrenal gland and ovary, including vasodilation and hyperemia in the adrenal cortex and medulla as well as hyperplasia and vacuolar degeneration, ovarian corpus luteum surface hyperemia, numerous but small corpus luteum, and disordered follicle development. But the serum levels of E2, FSH, LH, and PRL did not change obviously. These adverse effects in ATQ or PQ treated rats could not completely disappear after 21 days of recovery. CONCLUSION: Based on the results of this study, ART had no obvious reproductive and endocrine effects on female rats, while ATQ and PQ caused adrenal hyperplasia, increased ACTH, decreased PG, blocked estrus, corpus luteum surface hyperemia, and disrupted follicle development in female rats. These events suggest that ATQ and PQ may interfere with the female reproductive and endocrine systems, potentially reducing fertility.


Assuntos
Antimaláricos , Artemisininas , Hiperemia , Hormônio Adrenocorticotrópico , Animais , Antimaláricos/toxicidade , Artemisininas/toxicidade , Estradiol , Feminino , Hormônio Foliculoestimulante , Hiperplasia , Hormônio Luteinizante , Piperazinas , Prolactina , Prostaglandinas , Quinolinas , Ratos , Ratos Wistar
9.
J Ethnopharmacol ; 296: 115359, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605920

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Locally, among the Yoruba speaking people of South Western, Nigeria, the bulb of Crinum jagus (CJ), known as "ogede odo" is used to treat malaria and as an anthelmintic among other uses. AIMS OF THIS STUDY: Study aimed at identifying the purified active fractions and constituents of this fraction in an antiplasmodial activity-guided process. MATERIALS AND METHODS: Antiplasmodial activity-guided fractionation of the bulb and leaf extracts of CJ was investigated against chloroquine-sensitive (NK 65) Plasmodium berghei using 4-day suppressive and prophylactic methods. Molluscicidal activity of the extracts was assayed on adult Biomphalaria glabrata molluscs following WHO test protocols. Fractionation and purification of the active bulb extract was achieved using various chromatographic and spectroscopic techniques to isolate its constituents. Isolated compounds were identified using different spectroscopic methods. RESULTS AND DISCUSSION: Both extracts had oral median lethal dose (LD50) greater than 5000 mg/kg body weight (b.wt.). The leaf extract had 40% lethality on molluscs while the bulb extract was inactive. The chemosuppressive and prophylactic antimalarial effects of the bulb extract were 76.55 ± 2.76% and 90.49 ± 2.70% (p<0.05) respectively at 1000 mg/kg b. wt. while the reference drugs; chloroquine and pyrimethamine, had 80.26 ± 3.09% and 50.39 ± 6.80% chemosuppressive effects, respectively. Lycorine (1) and crinamine (2) were isolated from the alkaloidal fraction with 71.36 ± 12.54% antiplasmodial activity. CONCLUSION: The leaf and bulb extracts of Crinum jagus displayed low molluscicidal and moderate antimalarial activities. Lycorine and crinamine were identified from the antiplasmodial alkaloidal active fraction of the bulb.


Assuntos
Alcaloides , Antimaláricos , Crinum , Alcaloides/farmacologia , Antimaláricos/química , Antimaláricos/toxicidade , Cloroquina/farmacologia , Crinum/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plasmodium berghei
10.
Toxicol Appl Pharmacol ; 443: 116006, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35367236

RESUMO

M5717 is a novel drug inhibiting synthesis of elongation factor 2 (PeEF2) in Plasmodium species, showing potent anti-malarial activity in preclinical studies. Traditional daily-dosing animal experiments estimating maximum safe starting dose for a first-in-human study ('no observed adverse effect level'; NOAEL) were unsuccessful due to the long pharmacokinetic half-life of M5717, causing significant drug accumulation and high exposure. This study describes an innovative strategy to produce a GLP-certified toxicology package and estimate NOAEL for long-lasting molecules like M5717. Simulated pharmacokinetic/toxicokinetic profiles were used to design the dosing schedule for preclinical safety studies and to determine the 14-day total exposure. Animals (rats/dogs) were administered various doses of M5717 using an intermittent dosing schedule allowing partial drug elimination and alleviation of toxicity during off-treatment days to maintain a minimal parasitical concentration (MPC) of 10 ng/mL; subsequently animals were monitored for toxicity and mortality. Results showed good correlation to the modelled data used to design the dosing regimen and required MPC was reached for M5717 in study animals and could be used to calculate NOAEL. This fit-for-purpose study design allowed for maintaining clinically relevant exposure to M5717, whilst minimizing toxicity-causing compound accumulation, an aspect unaddressed by traditional NOAEL-estimating experiments. This is the first time that a compound-specific, species-specific, kinetic model-based approach to preclinical study design for regulatory toxicology studies has been described and applied to an antimalarial drug candidate with long pharmacokinetic half-life. It has potential for application to other drugs with long half-lives, supporting their clinical development.


Assuntos
Antimaláricos , Plasmodium , Animais , Antimaláricos/toxicidade , Cães , Nível de Efeito Adverso não Observado , Fator 2 de Elongação de Peptídeos , Ratos , Projetos de Pesquisa
11.
Exp Parasitol ; 236-237: 108254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378134

RESUMO

Croton linearis is a shrub that grows in Caribbean regions, which is rich in metabolites such as alkaloids. The main aim of this study was to evaluate the antiplasmodial effect of alkaloids from this species. Three isoquinoline alkaloids, i.e. reticuline (1), laudanidine (2) and 8,14-dihydrosalutaridine (3), were isolated from the leaves of C. linearis by flash chromatography and semi-preparative HPLC-DAD-MS. Their structures were elucidated by spectroscopic techniques. Antiplasmodial activity against the chloroquine-resistant strain Plasmodium falciparum K1 and cytotoxicity against MRC-5 cells (human fetal lung fibroblast cells) were assessed in vitro. Reticuline, laudanidine and 8,14-dihydrosalutaridine showed moderate antiplasmodial activity with IC50 values of 46.8 ± 0.6, 17.7 ± 0.6 and 16.0 ± 0.5 µM, respectively, but no cytotoxicity was observed in a concentration up to 64.0 µM. This is the first report on the antiplasmodial activity of laudanidine and 8,14-dihydrosalutaridine.


Assuntos
Alcaloides , Antimaláricos , Croton , Alcaloides/química , Alcaloides/toxicidade , Antimaláricos/química , Antimaláricos/toxicidade , Humanos , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química , Plasmodium falciparum
12.
BMC Complement Med Ther ; 22(1): 72, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296314

RESUMO

BACKGROUND: In response to the persistent problem of malaria resistance, medicinal herbal plants can be used as a source of potential novel antimalarial agents. Therefore, the aim of this study was to evaluate the in vivo antimalarial activity and toxicity of an ethanolic seed extract of Spondias pinnata (L.f.) Kurz (S. pinnata). METHODS: Qualitative phytochemical screening of the extract was performed using standard procedures, and the constituents were determined by gas chromatography-mass spectrometry (GC-MS). The in vivo antimalarial activity was assessed against the Plasmodium berghei ANKA strain in mice based on 4-day suppressive, curative and prophylactic tests. In addition, the acute toxicity of the extract was evaluated after oral administration of a single dose of 2,000 mg/kg body weight. RESULTS: Phytochemical screening tests on the ethanolic S. pinnata seed extract revealed the presence of terpenoids, tannins, and coumarins. GC-MS analysis of the extract led to the identification of twenty-nine phytochemical compounds, including oleic acid amide, ß-sitosterol, linoleic acid, oleic acid, protocatechuic acid, syringic acid and gallic acid. The results of the 4-day suppressive test revealed that mice treated with 250, 500, 600 and 800 mg/kg doses of the ethanolic S. pinnata seed extract showed significant parasitemia suppression in a dose-dependent manner, with 22.94, 49.01, 60.67 and 66.82% suppression, respectively, compared to that of the negative control group. All the doses of the ethanolic seed extract significantly suppressed parasitemia (P < 0.05) during the curative activity test and prolonged the mean survival time compared to those of the negative control group. However, the ethanolic seed extract displayed lower curative and prophylactic activities than the standard drug artesunate. In addition, the ethanolic seed extract showed no signs of toxicity in mice at a dose of 2,000 mg/kg body weight. CONCLUSION: The S. pinnata seed extract contains various phytochemical compounds with important medicinal properties. The extract showed a significant suppression of parasitemia in a dose-dependent manner, prolonged the mean survival time and exhibited significant curative and prophylactic activities. The overall results of this study demonstrated that the S. pinnata seed extract possessed promising in vivo antimalarial activity against P. berghei ANKA, with no toxicity. The findings from the present study provide scientific evidence supporting the use of S. pinnata seeds in the development of new drugs for malaria treatment. Additional studies are needed to isolate and identify the active compounds as well as to understand the mechanism of inhibition.


Assuntos
Anacardiaceae , Antimaláricos , Animais , Antimaláricos/química , Antimaláricos/toxicidade , Camundongos , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Plasmodium berghei , Sementes
13.
AAPS J ; 24(1): 33, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132508

RESUMO

In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue. In this work, inhalable formulations for thermal aerosolization of chloroquine and hydroxychloroquine were developed, and their physicochemical properties were characterized. Thermal aerosolization of 40 mg/mL chloroquine and 100 mg/mL hydroxychloroquine formulations delivered respirable aerosol particle sizes with 0.15 and 0.33 mg per 55 mL puff, respectively. In vitro toxicity was evaluated by exposing primary human bronchial epithelial cells to aerosol generated from Vitrocell. An in vitro exposure to 7.24 µg of chloroquine or 7.99 µg hydroxychloroquine showed no significant changes in cilia beating, transepithelial electrical resistance, and cell viability. The pharmacokinetics of inhaled aerosols was predicted by developing a physiologically based pharmacokinetic model that included a detailed species-specific respiratory tract physiology and lysosomal trapping. Based on the model predictions, inhaling emitted doses comprising 1.5 mg of chloroquine or 3.3 mg hydroxychloroquine three times a day may yield therapeutically effective concentrations in the lung. Inhalation of higher doses further increased effective concentrations in the lung while maintaining lower systemic concentrations. Given the theoretically favorable risk/benefit ratio, the clinical significance for pulmonary delivery of aerosolized chloroquine and hydroxychloroquine to treat COVID-19 needs to be established in rigorous safety and efficacy studies. Graphical abstract.


Assuntos
Antimaláricos/administração & dosagem , Tratamento Farmacológico da COVID-19 , Cloroquina/administração & dosagem , Hidroxicloroquina/administração & dosagem , Modelos Químicos , Administração por Inalação , Animais , Antimaláricos/farmacocinética , Antimaláricos/toxicidade , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/toxicidade , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
14.
BMC Complement Med Ther ; 22(1): 51, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35219319

RESUMO

BACKGROUND: Novel potent antimalarial agents are urgently needed to overcome the problem of drug-resistant malaria. Herbal treatments are of interest because plants are the source of many pharmaceutical compounds. The Mahanil-Tang-Thong formulation is a Thai herbal formulation in the national list of essential medicines and is used for the treatment of fever. Therefore, this study aimed to evaluate the antimalarial activity of medicinal plants in the Mahanil-Tang-Thong formulation. METHODS: Nine medicinal plant ingredients of the Mahanil-Tang-Thong formulation were used in this study. Aqueous and ethanolic extracts of all the plants were analyzed for their phytochemical constituents. All the extracts were used to investigate the in vitro antimalarial activity against Plasmodium falciparum K1 (chloroquine-resistant strain) by using the lactate dehydrogenase (pLDH) method and cytotoxicity in Vero cells by using the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, an extract with potent in vitro antimalarial activity and no toxicity was selected to determine the in vivo antimalarial activity with Peters' 4-day suppressive test against the Plasmodium berghei ANKA strain. Acute toxicity was evaluated in mice for 14 days after the administration of a single oral dose of 2000 mg/kg. RESULTS: This study revealed that ethanolic extracts of Sapindus rarak DC., Tectona grandis L.f., Myristica fragrans Houtt. and Dracaena loureiri Gagnep. exhibited potent antimalarial activity, with half-maximal inhibitory concentration (IC50) values of 2.46, 3.21, 8.87 and 10.47 µg/ml, respectively, while the ethanolic of the formulation exhibited moderate activity with an IC50 value of 37.63 µg/ml and its aqueous extract had no activity (IC50 = 100.49 µg/ml). According to the in vitro study, the ethanolic wood extract of M. fragrans was selected for further investigation in an in vivo mouse model. M. fragrans extract at doses of 200, 400, and 600 mg/kg body weight produced a dose-dependent reduction in parasitemia by 8.59, 31.00, and 52.58%, respectively. No toxic effects were observed at a single oral dose of 2000 mg/kg body weight. CONCLUSION: This study demonstrates that M. fragrans is a potential candidate for the development of antimalarial agents.


Assuntos
Antimaláricos , Animais , Antimaláricos/toxicidade , Chlorocebus aethiops , Camundongos , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Plasmodium berghei , Plasmodium falciparum , Células Vero
15.
Regul Toxicol Pharmacol ; 129: 105114, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007669

RESUMO

Artemisinin-hydroxychloroquine sulfate tablets (AH) are considered a relatively inexpensive and novel combination therapy for treating all forms of malaria, especially aminoquinoline drugs-resistant strains of P.falciparum. We aim to carry out acute and subacute oral toxicity studies in rats to acquire preclinical data on the safety of AH. Acute toxicity was evaluated in Sprague-Dawley (SD) rats at a single dose of 1980, 2970, 4450, 6670, and 10000 mg/kg. A 14-days subacute toxicity was assessed in SD rats at doses of 0, 146, 219, 328, and 429 mg/kg. The median lethal dose (LD50) of acute oral administration of AH in rats is found to be 3119 mg/kg, and toxic symptoms include decreased spontaneous activity, dyspnea, bristling, soft feces, spasticity, and convulsion. Repeated doses of AH have toxic effects on the nervous system, skin, blood system, liver, kidney, and spleen in rats. The main toxic reactions include epilation, emaciation, mental irritability, decreased body weight gain and food consumption, changes in the hematological and biochemical parameters, especially pathological lesions in the liver, kidney, and spleen. The no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of AH are considered to be 219 mg/kg and 328 mg/kg, respectively.


Assuntos
Antimaláricos/toxicidade , Artemisininas/toxicidade , Hidroxicloroquina/toxicidade , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/farmacologia , Dose Letal Mediana , Masculino , Nível de Efeito Adverso não Observado , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
16.
Parasitol Int ; 87: 102532, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34933121

RESUMO

Plasmodium falciparum, the most virulent human malaria parasite, causes serious diseases among the infected patients in the world and is particularly important in African regions. Although artemisinin combination therapy is recommended by the WHO for treatment of P. falciparum-malaria, the emergence of artemisinin-resistant parasites has become a serious issue which underscores the importance of sustained efforts to obtain novel chemotherapeutic agents against malaria. As a part of such efforts, thirty-nine herbal extracts from traditional Chinese medicine (TCM) were assayed for their anti-malarial activity using 3D7 strain of P. falciparum. Three herbal supplements appeared to possess higher specific anti-malarial activity than the others. One of them (D3) was separated by two sequential fractionations with reverse-phase (the first step) and normal-phase (the second step) liquid chromatography, in which some fractions resulted in higher specific activities than those of D3 or the previous fractions. Cell toxicity assay was performed with the fractions of the first fractionation and demonstrated no obvious cell toxicity. These results suggest that structure determination of the major compound for the anti-malarial activity in D3 may help the development of more potent chemicals in the future.


Assuntos
Antimaláricos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Inonotus/química , Malária Falciparum/tratamento farmacológico , Panax notoginseng/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/toxicidade , Células HeLa , Humanos , Concentração Inibidora 50 , Japão
17.
Malar J ; 20(1): 457, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865639

RESUMO

BACKGROUND: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A-D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. METHODS: Preclinical evaluation of strasseriolides A-D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC-MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4-5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager. RESULTS: Strasseriolides A-D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. CONCLUSIONS: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A-D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.


Assuntos
Antimaláricos , Ascomicetos/química , Macrolídeos , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Avaliação Pré-Clínica de Medicamentos , Feminino , Macrolídeos/química , Macrolídeos/farmacologia , Macrolídeos/toxicidade , Camundongos
18.
Chem Biol Interact ; 350: 109688, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627786

RESUMO

Malaria remains one of the most important parasitic diseases in the world. The multidrug-resistant Plasmodium strains make the treatment currently available for malaria less effective. Therefore, the development of new drugs is necessary to overcome therapy resistance. Triazole derivatives exhibit several biological activities and provide a moiety that is promising from the biological perspective. Due to the structural similarity to NADH, it is believed that triazoles can bind to the active site of the Plasmodium lactate dehydrogenase (pLDH) enzyme. The present work evaluates the antimalarial activity of 1,2,3-triazole derivatives by in silico, in vitro, and in vivo studies. Preliminary in silico ADMET studies of the compounds demonstrated good pharmacokinetic properties. In silico docking analysis against LDH of Plasmodium berghei (PbLDH) showed that all compounds presented interactions with the catalytic residue in the active site and affinity similar to that presented by chloroquine; the most common antimalarial drug. Cytotoxicity and hemolysis by these derivatives were evaluated in vitro. The compounds 1, 2, 5, 8, and 9 proved to be non-cytotoxic in the performed tests. In vivo antimalarial activity was evaluated using mice infected with Plasmodium berghei NK65. The five compounds tested exhibited antimalarial activity until nine days post-infection. The compound 5 showed promising activities, with about 70% parasitemia suppression. Considering the in vitro and in vivo studies, we believe the compound 5 to be the most promising molecule for further studies in antimalarial chemotherapy.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacocinética , Triazóis/síntese química , Triazóis/farmacocinética , Animais , Antimaláricos/toxicidade , Domínio Catalítico , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Feminino , Hemólise/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/química , Macrófagos Peritoneais/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Simulação de Acoplamento Molecular , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/enzimologia , Estrutura Quaternária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Relação Estrutura-Atividade , Triazóis/toxicidade
19.
Curr Drug Metab ; 22(10): 824-834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602032

RESUMO

BACKGROUND: Hepatocellular damage has been reported for the antimalarial piperaquine (PQ) in the clinic after cumulative doses. OBJECTIVES: The role of metabolism in PQ toxicity was evaluated, and the mechanism mediating PQ hepatotoxicity was investigated. METHODS: The toxicity of PQ and its major metabolite (PQ N-oxide; M1) in mice was evaluated in terms of serum biochemical parameters. The role of metabolism in PQ toxicity was investigated in mice pretreated with an inhibitor of CYP450 (ABT) and/or FMO enzyme (MMI). The dose-dependent pharmacokinetics of PQ and M1 were studied in mice. Histopathological examination was performed to reveal the mechanism mediating PQ hepatotoxicity. RESULTS: Serum biochemical levels (ALT and BUN) increased significantly (P < 0.05) in mice after three-day oral doses of PQ (> 200 mg/kg/day), indicating hepatotoxicity and nephrotoxicity of PQ at a high dose. Weaker toxicity was observed for M1. Pretreatment with ABT and/or MMI did not increase PQ toxicity. PQ and M1 showed linear pharmacokinetics in mice after a single oral dose, and multiple oral doses led to their cumulative exposures. Histopathological examination showed that a high dose of PQ (> 200 mg/kg/day for three days) could induce hepatocyte apoptosis. The mRNA levels of targets in NF-κB and p53 pathways could be up-regulated by 2-30-fold in mice by PQ or M1. CONCLUSION: PQ metabolism led to detoxification of PQ, but there was a low possibility of altered toxicity induced by metabolism inhibition. The hepatotoxicity of PQ and its N-oxidation metabolite was partly mediated by NF-κB inflammatory pathway and p53 apoptosis pathway.


Assuntos
Artemisininas , Doença Hepática Induzida por Substâncias e Drogas , Inativação Metabólica , Nefropatias , Piperazinas , Quinolinas , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacocinética , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/toxicidade , Artemisininas/administração & dosagem , Artemisininas/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/toxicidade , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia Combinada , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Redes e Vias Metabólicas , Camundongos , NF-kappa B/metabolismo , Piperazinas/administração & dosagem , Piperazinas/farmacocinética , Piperazinas/toxicidade , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Quinolinas/toxicidade , Proteína Supressora de Tumor p53/metabolismo
20.
Toxicology ; 464: 152995, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678321

RESUMO

Mefloquine is a quinoline-based compound widely used as an antimalarial drug, particularly in chemoprophylaxis. Although decades of research have identified various aspects of mefloquine's anti-Plasmodium properties, toxic effects offset its robust use in humans. Mefloquine exerts harmful effects in several types of human cells by targeting many of the cellular lipids, proteins, and complexes, thereby blocking a number of downstream signaling cascades. In general, mefloquine modulates several cellular phenomena, such as alteration of membrane potential, induction of oxidative stress, imbalance of ion homeostasis, disruption of metabolism, failure of organelle function, etc., leading to cell cycle arrest and programmed cell death. This review aims to summarize the information on functional and mechanistic findings related to the cytotoxic effects of mefloquine.


Assuntos
Antimaláricos/toxicidade , Mefloquina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...